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The theory of nonsy-mmetrlcal elasticity was first studied In paper Cl]. A 
modern dirlvation of the equations of the theory and an account of its basis 
may be found in [2 and 31. 

1, To describe the state of stress in the medium, we introduce, follow- 
ing [l to 33, a dyadic of couple-stresses p In addition to the stress 
dyadlc T , The components of the stress dyadic represent forces acting on 
a unit area of the corresponding cross-section, whereas the couple-stress 
dyadlc represents a moment aotlng on a unit area of the same cross-section. 
To describe the displacements of particles of the medium, we introduce a 
field of rotations CD, which Is kinematically Independent of the usual dls- 
placement field u . The stress dyadlc and the couple-stress dyadlc satisfy 
equations of equilibrium, which in the absence of body forces and moments 
have the form (2 and 31 

0.z = 0, v.p + z, = 0 (1.1) 

Here V Is the differential operator of Hamilton and T, denotes the 
vector Invariant of the stress dyadlc T c41. 

We next Introduce the deformation dyadlcs A and M . For small u and 
Q they are defined as follows [3] : 

A==~u+Ix~‘, M=V’D (I Is unit dyadlc) (1.2) 

The connection between stresses and deformations for the isotropic elastic 
medium Is given by the generalized Hooke's law 

r= AII. .A+ ++A+ + 2aA-, p = PII. .M+ + 2yM+ + 2&M- (1.3) 

which contains six elastic constants (I, B, y, c 
are the usual Lam6 constants. In the relations {l'f;)'i $ge%pe!iscE?$ A 
denotes symmetric components of the dyadlc and a minus superscript denotes 
antisymmetric components. 

2. We examine an elastic body under condition of plane deformation. We 
set 

u = iu (I, Y) + jv (z, Y), CD = k@ (z, y) (2.1) 

where i, j, k are unit vectors along the X, y, e axes of a rectangular 
Cartesian system of coordinates. 
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The nonvanishing components of the 1\ a?d M dyadlcs In this case are 

Mxr = ‘; 
am 

M,, = ay 
(2.2) 

It Is not difficult to verify that the following Identities among the 
remaining elements of the deformation dyadlcs are valid 

(2.3) 
aA?,X ail,, an,,, aL, a&f, a%, 

ax a?/ 
Kc, = 0, z- __ - AI,, = 0, 

ay XT ay 
- ___ = 0 (2.4) 

They represent the conditions of compatiblllty of deformations for the 
particular case of plane deformation. Conditions (2.3) and (2.4) coincide 
with the corresponding conditions of [5]. Many components of the A and 
M dyadlcs vanish; hence the Hooke's law relations greatly slmpllfy 

By virtue of (2.2) and (2.5), the components of the stress dyadlc and the 
couple-stress dyadlc do not depend on the z coordinate. Hence the equations 
of equilibrium reduce to the system 

a% + % + I&, - z,, = 0 (2.6) 

Solving the Iooke's law relationships for the compon?nts of A and M,we 
obtain 1 

A X5 AVu = G [%, - y (TX, + z&l (2.6) 

Here v Is Poisson's ratio. The components of the stress dyadlc and the 
couple-stress dyadlc which do not enter into (2.6) to (2.10) can be expressed 
In terms of those components that do enter Into these relations 

= v (TX, + %)7 
r-s r--s 

IJZX = FEEXZV 
-~ 

rzz I% - 7 + s&z (2.11) 

Substituting Expressions (2.8), (2.9), (2.10) Into (2.3) and (2.4), we 
obtain 

v (%xX e %4v) I kcr - V = 0 (2.12) 
Y-t& 

+ 
TxY _ -!$!L = 0 (2.13) 

r+s 

apUz *Xz _ o 
ax ay - 

(2.14) 
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The six equations (2,6),and (2.12) to (2.14) form a complete system of 
equations in terms of stresses for the case of plane deformation. 

Following [5 and 61, we express the stresses and the couple-stresses In 
terms of two stress functions 

z a2v a21C, 
w=--- axay ayz- (2.16) 

A straightforward calculation shows that the equations of equilibrium 
(2.6) and conditions (2.14) are satisfied Identically. 

Substitution of Expressions (2.15) and (2.16) Into (2.12) and (2.13) for 
the determination of the stress functions cp and $ gives 

$9 - 12X7+) = - 2 (1 - Y) h2 &VT (2.17) 

where 

(2.18) 

(2.19) 

We differentiate the first equation with respect to y , the second with 
respect to x , and subtract one equation from the other. 

We obtain a biharmonic equation for the stress function cp 

v%$J= 0 (2.20) 

In a similar fashion we obtain an equation for Jr 

O"($-- Z202$) = 0 (2.21) 

It should be noted that although separate equations have been obtained 
for rp and $ , their solutions are nevertheless not arbitrary, but must be 
chosen In such a way that Equations (2.17) and (2.18) are satisfied. 

We likewise note that Equations (2.17) and (2.18) coincide with those In 
[6] only when c is Infinitely large. Equations (2.20) and (2.21) In 
essence coincide with the analogous equations of 153. 

3. We examine the problem of the stress concentration in the neighbor- 
hood of a circular hole in a simple tensile field. Namely, we assume that 
the periphery of the hole r = a 13 free of stresses and couple-stress 
and that at Infinity we have the state of stress 

"3uc = P, y/Y = zxg = ryx = t&z= pvz = 0 (3.0 

In the solution, we use a polar coordinate system (.Y= r case , y=r sin 0). 
The stress functions cp and $ must separately satisfy Equations 

O”cp =. 0, 02 (l/l - PV’$) = 0 (V2=&+s+f$) (3.2) 

In a polar coordinate system, Equations (2.17) and (2.18) take on the 
form 

-$ (9 - Z"V"$) = -2 (I- v) h2f $ V2cp (3.3) 

l a 
7 -&J (II -ZT72$) = 2 (1 - Y) h2 g v(p 

By the usual methods, we obtain the following formulas for the components 
of the stress dyadlc In a polar coordinate system (cf. C61) 
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T 
1 acp + 1 @?J --- 

rr - r ar ---Y&($$, zee=g+g(fg) (3.4) r2 iNj2 

The boundary conditions In the problem at hand are 
for r = a 

z rr = 0, q, = 0, Pn = 0 

for r-+00 

(3.5) 

r rr = l/&l $ cos 2fl), Q,, = ‘12p (1 - cps 29), rre = TV,. = prr = per = 0 (3.6) 

The stress functions satisfy conditions (3.8) and Equations (3.2) C6J. 

cp = */p prz (1 - cos 26) -f- A In r _t- (Bre2 + C) co9 2fl 

ip = [Drm2 f EK2 (r / I)] sin 26 

f3.7) 

where K, la the modified Bessel function of the second kind and second 
order. 

Substitution of (3.7) Into (3.3) leads to the following restriction on the 
coefficients In the functions cp and t 

D = 8 (1 - v) h2C (3.6) 

Substltu;n.gti(F6J ) Into (3.4) and then Into the boundary conditions (3.5), 
we arrive, at the following system of equations for the determl- 
nation of the constits A, B, C, D, E : 

++&o 

_+-- T ~(~-D)+~[~K~(~)+(~+~)K,(~)]=o 

P -- 
2 -~-~(B-D)+~[$-KO(+)+(i+~)~l(+)]=~ (3.9) 

-$--+[fKO(f)+(i+~)~l(f)]=~ 

The solution of 

_J=-f, 

this system, together with equation (3.8), has the form 

B = Pa’ (1 - P) 
2 

4 (1 -;- F) ’ C=2&- P)’ 
D = 4 (1 - Y) awp 

1-k p 

“=-(*+$?&,I) (3.10) 

whereby 

F = 8 (1 -- Y) ; (3.11) 

Using these values of the constants we find for the stress zeO on the 
periphery of the hole 

zee=P If 1-j-F ze) (IU~X z,, = p ‘SF for 6 = &%) (3.12) 
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We Introduce the stress concentration factor for the neighborhood of the 
hole 

6= 
max z,@ 3+F 
--‘1+F P 

(3.13) 

From Formulas (3.11) and (3.13) It is seen that the stress concentration 
factor depends on the elastic constants of the material and the radius of 
the hole. 

From (3.13) It is clear that the largest b Is obtained for the smallest 
F But from (3.11) it follows that the minimum value of F Is zero and 
that It is attained for l+m, I.e. for Q. ~0 . In this case one attains the 
classical value of b = 3 for the stress concentration factor. 

The smallest b is attained at the largest F . But fqom (3.11) It fol- 
lows that the maximum F Is realized for all-+oo, v=O, h = 1,l.e. for a. - -. 
For these values of the parameters we obtain F = 2 . Thus we find 

6 =5/3 (3.14) 

This Is 1.8 times smaller than the classical value. For other, arbitrary 
possible values of the classic constants of the material, the stress concen- 
tration factor lies between the two limiting values found above. 
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